文 / Rory Sayres 博士和 Jonathan Krause 博士,Google AI 医疗保健团队
两年前,我们宣布了在糖尿病视网膜病变 (DR) 深度学习模型训练方面取得的开创性成果,DR 是糖尿病的并发症之一,也是一种发展速度很快的病症,会导致视力丧失。基于这项研究,我们开始着手将我们的技术应用于改善全球的健康结果。同时,我们继续着力改进模型的性能、可解释性,以及在临床环境中的适用性。今天,我们要分享针对这些目标的研究成果,还要宣布在泰国的新合作伙伴。
使用高质量标签改进模型性能
DR 深度学习模型的性能至关重要,特别是在微小错误可能造成误诊的情况下。今年早些时候,我们在《眼科学》("Ophthalmology") 期刊上发表了一篇论文,述及我们如何通过 1) 转为使用更精细的 5 分分级量表(与之前的 2 类系统相比)和 2) 综合视网膜专家小组的判断来改进我们的模型。在判断期间,一组视网膜专家会就任何存在分歧的案例进行讨论,直到所有专家都在最终等级上达成一致。相比于单纯采用多数表决,这种分歧解决方法更加准确,并且可以识别出细微发现,例如微动脉瘤。
为了提高判断过程的效率,我们精心选择了一个小型图像子集 (0.22%) 作为优化集,并根据这一更加准确的参考标准优化模型超参数,从而大幅提升模型性能。当我们随后使用判定参考标准衡量测试图像集的一致率时,单个视网膜专家、眼科医生和算法的 kappa 评分(一种一致性