利用深度学习辅助皮肤病诊断

研究人员开发了一种深度学习系统(DLS),能够处理常见皮肤病的鉴别诊断,其准确率接近皮肤科医生。DLS通过处理临床图像和元数据,为全科医生提供诊断支持,有望提高皮肤病诊断的准确性和护理质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文 / Yuan Liu, SE & Peggy Bui, PM, Google Health 

640?wx_fmt=png

据估计,全球有 19 亿人口时刻在遭受皮肤病的困扰,由于缺少皮肤科医生,许多患者只能由全科医生诊治。单就美国而言,高达 37% 的就诊患者患有多种皮肤病,而其中半数以上不是由皮肤专科医生进行诊治的。研究表明,在诊断皮肤状况时,全科医生和皮肤科医生在准确率方面存在显著差异,全科医生的诊断准确率在 24% 至 70% 之间,而皮肤科医生的准确率为 77% 至 96%。而这可能会导致错误转诊、护理延误以及诊断和治疗错误等问题。

现在,非皮肤科医生可通过参考书、在线资源以及咨询同事等方式提高诊断准确率。为此,研究人员还专门开发了各种机器学习工具。过去研究的重点是皮肤癌的早期筛查,尤其是确定病变是否为恶性,或者病变是否为黑色素瘤。然而,多达 90% 的皮肤问题都不是恶性疾病,解决这些常见的问题对改善全球皮肤病状况同样重要。

如“ 用于皮肤病鉴别诊断的深度学习系统 (A Deep Learning System for Differential Diagnosis of Skin Diseases)”中所述,我们开发出一种 深度学习系统 (deep learning system, DLS),用于处理基本护理中最常见的皮肤病。我们的结果表明,基于相同的患者病例信息(图像和元数据),DLS 可准确诊断出 26 种皮肤病,堪比美国职业认定的皮肤科医生。显然,此研究展现出了 DLS 帮助未经额外专业培训的全科医生提高准确诊断皮肤病能力的潜力。

DLS 设计

临床医生经常面临模棱两可的病例,并无法准确确定病因。例如,患者的皮疹是淤积性皮炎还是蜂窝组织炎,或者可能两者兼有?临床医生并非仅给出一个诊断结果,而是给出鉴别诊断表,列出所有可能的皮肤病。鉴别诊断表提供了疾病的大致范围,以便进行系统的检查(实验室检测、影像扫描、一般性检查流程、咨询)和治疗,直到最终确诊。同样地,深度学习系统 (DLS) 能够模仿临床医生的思维方式,根据皮肤症状排列出可能的皮肤病,从而对患者进行快速分诊、诊断和治疗。

为实现此预测,DLS 会处理各种输入数据,包括一张或多张皮肤异常的临床图像以及多达 45 类元数据(病历

登录后您可以享受以下权益:

×
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部