文 / Yuan Liu, SE & Peggy Bui, PM, Google Health
据估计,全球有 19 亿人口时刻在遭受皮肤病的困扰,由于缺少皮肤科医生,许多患者只能由全科医生诊治。单就美国而言,高达 37% 的就诊患者患有多种皮肤病,而其中半数以上不是由皮肤专科医生进行诊治的。研究表明,在诊断皮肤状况时,全科医生和皮肤科医生在准确率方面存在显著差异,全科医生的诊断准确率在 24% 至 70% 之间,而皮肤科医生的准确率为 77% 至 96%。而这可能会导致错误转诊、护理延误以及诊断和治疗错误等问题。
现在,非皮肤科医生可通过参考书、在线资源以及咨询同事等方式提高诊断准确率。为此,研究人员还专门开发了各种机器学习工具。过去研究的重点是皮肤癌的早期筛查,尤其是确定病变是否为恶性,或者病变是否为黑色素瘤。然而,多达 90% 的皮肤问题都不是恶性疾病,解决这些常见的问题对改善全球皮肤病状况同样重要。
如“ 用于皮肤病鉴别诊断的深度学习系统 (A Deep Learning System for Differential Diagnosis of Skin Diseases)”中所述,我们开发出一种 深度学习系统 (deep learning system, DLS),用于处理基本护理中最常见的皮肤病。我们的结果表明,基于相同的患者病例信息(图像和元数据),DLS 可准确诊断出 26 种皮肤病,堪比美国职业认定的皮肤科医生。显然,此研究展现出了 DLS 帮助未经额外专业培训的全科医生提高准确诊断皮肤病能力的潜力。
DLS 设计
临床医生经常面临模棱两可的病例,并无法准确确定病因。例如,患者的皮疹是淤积性皮炎还是蜂窝组织炎,或者可能两者兼有?临床医生并非仅给出一个诊断结果,而是给出鉴别诊断表,列出所有可能的皮肤病。鉴别诊断表提供了疾病的大致范围,以便进行系统的检查(实验室检测、影像扫描、一般性检查流程、咨询)和治疗,直到最终确诊。同样地,深度学习系统 (DLS) 能够模仿临床医生的思维方式,根据皮肤症状排列出可能的皮肤病,从而对患者进行快速分诊、诊断和治疗。
为实现此预测,DLS 会处理各种输入数据,包括一张或多张皮肤异常的临床图像以及多达 45 类元数据(病历